Simple New Axioms for Quantum Mechanics
نویسنده
چکیده
The space P of pure states of any physical system, classical or quantum, is identified as a Poisson space with a transition probability. The latter is a function p : P × P → [0, 1]; in addition, a Poisson bracket is defined for functions on P . These two structures are connected through unitarity. Classical and quantum mechanics are each characterized by a simple axiom on the transition probability p. Unitarity then determines the Poisson bracket of quantum mechanics up to a multiplicative constant (identified with Planck’s constant). Superselection rules are naturally incorporated.
منابع مشابه
Recovering the quantum formalism from physically realist axioms
We present a heuristic derivation of Born's rule and unitary transforms in Quantum Mechanics, from a simple set of axioms built upon a physical phenomenology of quantization. This approach naturally leads to the usual quantum formalism, within a new realistic conceptual framework that is discussed in details. Physically, the structure of Quantum Mechanics appears as a result of the interplay be...
متن کاملQuantum Computing, Postselection, and Probabilistic Polynomial-Time
I study the class of problems efficiently solvable by a quantum computer, given the ability to ‘postselect’ on the outcomes of measurements. I prove that this class coincides with a classical complexity class called PP, or probabilistic polynomial-time. Using this result, I show that several simple changes to the axioms of quantum mechanics would let us solve PP-complete problems efficiently. T...
متن کاملComplex Energies and Beginnings of Time Suggest a Theory of Scattering and Decay
Many useful concepts for a quantum theory of scattering and decay (like Lippmann-Schwinger kets, purely outgoing boundary conditions, exponentially decaying Gamow vectors, causality) are not well defined in the mathematical frame set by the conventional (Hilbert space) axioms of quantum mechanics. Using the Lippmann-Schwinger equations as the takeoff point and aiming for a theory that unites re...
متن کاملBell Length as Mutual Information in Quantum Interference
The necessity of a rigorously operative formulation of quantum mechanics, functional to the exigencies of quantum computing, has raised the interest again in the nature of probability and the inference in quantum mechanics. In this work, we show a relation among the probabilities of a quantum system in terms of information of non-local correlation by means of a new quantity, the Bell length.
متن کاملIntroduction to the Yang-Baxter Equation with Open Problems
The Yang-Baxter equation first appeared in theoretical physics, in a paper by the Nobel laureate C. N. Yang, and in statistical mechanics, in R. J. Baxter’s work. Later, it turned out that this equation plays a crucial role in: quantum groups, knot theory, braided categories, analysis of integrable systems, quantum mechanics, non-commutative descent theory, quantum computing, non-commutative ge...
متن کامل